Google
 

Open Sound System
The Hitchhiker's Guide to OSS 4.1 Internals

Do you have problems with sound/audio application development? Don't panic! Click here for help!

oss_audiocs/oss_audiocs.c

Driver for the UltraSparc workstations using CS4231 codec for audio

Description



This driver is for Solaris/Sparc only. It uses Solaris specific kernel services which are not portable to other operating systems.

Originally this driver supported various AD1848 based ISA codecs. For this reason devc->model is used to find out which features the codec supports. The latest version of the driver supports only models 2 (CS4231) and 3 (CS4231A).



This file is part of Open Sound System.

Copyright (C) 4Front Technologies 1996-2008.

This this source file is released under GPL v2 license (no other versions). See the COPYING file included in the main directory of this source distribution for the license terms and conditions.


#include "oss_audiocs_cfg.h"
#include <oss_pci.h>

#include "cs4231_mixer.h"

struct cs4231_pioregs
{
 	uint8_t iar;		/* index address register */
	uint8_t pad1[3];		/* pad */
	uint8_t idr;		/* indexed data register */
	uint8_t pad2[3];		/* pad */
	uint8_t statr;		/* status register */
	uint8_t pad3[3];		/* pad */
	uint8_t piodr;		/* PIO data regsiter */
	uint8_t pad4[3];
};


These are the registers for the EBUS2 DMA channel interface to the 4231. One struct per channel for playback and record, therefore there individual handles for the CODEC and the two DMA engines.


struct cs4231_eb2regs {
	uint32_t 	eb2csr;		/* Ebus 2 csr */
	uint32_t 	eb2acr;		/* ebus 2 Addrs */
	uint32_t 	eb2bcr;		/* ebus 2 counts */
};
typedef struct cs4231_eb2regs cs4231_eb2regs_t;

#define	PLAY_CSR	devc->play_regs->eb2csr
#define	PLAY_ACR	devc->play_regs->eb2acr
#define	PLAY_BCR	devc->play_regs->eb2bcr
#define	REC_CSR		devc->rec_regs->eb2csr
#define	REC_ACR		devc->rec_regs->eb2acr
#define	REC_BCR		devc->rec_regs->eb2bcr

typedef struct
{
  oss_device_t *osdev;
  oss_mutex_t mutex;
  oss_mutex_t low_mutex;
  struct cs4231_pioregs *codec_base;
  uint_t *auxio_base;

  cs4231_eb2regs_t *play_regs;
  cs4231_eb2regs_t *rec_regs;

  ddi_acc_handle_t codec_acc_handle;
  ddi_acc_handle_t auxio_acc_handle;
  ddi_acc_handle_t play_acc_handle;
  ddi_acc_handle_t rec_acc_handle;
#define CODEC_HNDL devc->codec_acc_handle
#define PLAY_HNDL  devc->play_acc_handle
#define REC_HNDL   devc->rec_acc_handle
#define AUXIO_HNDL devc->auxio_acc_handle

  unsigned char MCE_bit;
  unsigned char saved_regs[32];

  int audio_flags;
  int record_dev, playback_dev;
  int speed;
  unsigned char speed_bits;
  int channels;
  int audio_format;
  unsigned char format_bits;

  int xfer_count;
  int audio_mode;
  int open_mode;
  char *chip_name;
  int model;
#define MD_1848		1
#define MD_4231		2
#define MD_4231A	3

  /* Mixer parameters */
  int is_muted;
  int recmask;
  int supported_devices, orig_devices;
  int supported_rec_devices, orig_rec_devices;
  int *levels;
  short mixer_reroute[32];
  int dev_no;
  volatile unsigned long timer_ticks;
  int timer_running;
  int irq_ok;
  mixer_ents *mix_devices;
  int mixer_output_port;
}
cs4231_devc_t;

typedef struct cs4231_portc_t
{
  int open_mode;
}
cs4231_portc_t;

static int ad_format_mask[9 /*devc->model */ ] =
{
  0,
  AFMT_U8 | AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW,
  AFMT_U8 | AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | AFMT_S16_BE,
  AFMT_U8 | AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | AFMT_S16_BE,
  AFMT_U8 | AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW,	/* AD1845 */
  AFMT_U8 | AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | AFMT_S16_BE,
  AFMT_U8 | AFMT_S16_LE | AFMT_S16_BE,
  AFMT_U8 | AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | AFMT_S16_BE,
  AFMT_U8 | AFMT_S16_LE		/* CMI8330 */
};

#define CODEC_INB(devc, addr)		ddi_get8(CODEC_HNDL, addr)
#define CODEC_OUTB(devc, data, addr)	ddi_put8(CODEC_HNDL, addr, data)


CS4231 codec I/O registers

#define io_Index_Addr(d)	&d->codec_base->iar
#define io_Indexed_Data(d)	&d->codec_base->idr
#define io_Status(d)		&d->codec_base->statr
#define io_Polled_IO(d)		&d->codec_base->piodr
#define CS4231_IO_RETRIES	10


EB2 audio registers

#define		EB2_AUXIO_COD_PDWN	0x00000001u	/* power down Codec */

static int cs4231_open (int dev, int mode, int open_flags);
static void cs4231_close (int dev, int mode);
static int cs4231_ioctl (int dev, unsigned int cmd, ioctl_arg arg);
static void cs4231_output_block (int dev, oss_native_word buf, int count,
				 int fragsize, int intrflag);
static void cs4231_start_input (int dev, oss_native_word buf, int count,
				int fragsize, int intrflag);
static int cs4231_prepare_for_output (int dev, int bsize, int bcount);
static int cs4231_prepare_for_input (int dev, int bsize, int bcount);
static void cs4231_halt (int dev);
static void cs4231_halt_input (int dev);
static void cs4231_halt_output (int dev);
static void cs4231_trigger (int dev, int bits);

static void
eb2_power(cs4231_devc_t * devc, int level)
{
	unsigned int tmp;
	oss_native_word flags;

  	MUTEX_ENTER_IRQDISABLE (devc->low_mutex, flags);
	tmp = ddi_get32(AUXIO_HNDL, devc->auxio_base);

	tmp &= ~EB2_AUXIO_COD_PDWN;

	if (!level)
	   tmp |= EB2_AUXIO_COD_PDWN;
	ddi_put32(AUXIO_HNDL, devc->auxio_base, tmp);

	oss_udelay(10000);

  	MUTEX_EXIT_IRQRESTORE (devc->low_mutex, flags);
}

static int
ad_read (cs4231_devc_t * devc, int reg)
{
  oss_native_word flags;
  int x;

  reg = reg & 0xff;

  MUTEX_ENTER_IRQDISABLE (devc->low_mutex, flags);

  for (x=0;x<CS4231_IO_RETRIES;x++)
  {
     CODEC_OUTB (devc, (unsigned char) reg | devc->MCE_bit,
	io_Index_Addr (devc));
     oss_udelay(1000);

     if (CODEC_INB (devc, io_Index_Addr (devc)) == (reg | devc->MCE_bit))
	break;
  }

  if (x==CS4231_IO_RETRIES)
  {
     cmn_err(CE_NOTE, "Indirect register selection failed (read %d)\n", reg);
     cmn_err(CE_CONT, "Reg=%02x (%02x)\n", CODEC_INB (devc, io_Index_Addr (devc)), reg | devc->MCE_bit);
  }

  x = CODEC_INB (devc, io_Indexed_Data (devc));
  MUTEX_EXIT_IRQRESTORE (devc->low_mutex, flags);

  return x;
}

static void
ad_write (cs4231_devc_t * devc, int reg, int data)
{
  oss_native_word flags;
  int x;

  reg &= 0xff;

  MUTEX_ENTER_IRQDISABLE (devc->low_mutex, flags);

  for (x=0;x<CS4231_IO_RETRIES;x++)
  {
     CODEC_OUTB (devc, (unsigned char) reg | devc->MCE_bit,
	io_Index_Addr (devc));

     oss_udelay(1000);

     if (CODEC_INB (devc, io_Index_Addr (devc)) == (reg | devc->MCE_bit))
	break;
  }

  if (x==CS4231_IO_RETRIES)
  {
     cmn_err(CE_NOTE, "Indirect register selection failed (write %d)\n", reg);
     cmn_err(CE_CONT, "Reg=%02x (%02x)\n", CODEC_INB (devc, io_Index_Addr (devc)), reg | devc->MCE_bit);
  }

  CODEC_OUTB (devc, (unsigned char) (data & 0xff), io_Indexed_Data (devc));
  oss_udelay(1000);

  MUTEX_EXIT_IRQRESTORE (devc->low_mutex, flags);
}

static void
ad_mute (cs4231_devc_t * devc)
{
  int i;
  unsigned char prev;


Save old register settings and mute output channels

  for (i = 6; i < 8; i++)
    {
      prev = devc->saved_regs[i] = ad_read (devc, i);

      devc->is_muted = 1;
      ad_write (devc, i, prev | 0x80);
    }
}

static void
ad_unmute (cs4231_devc_t * devc)
{
  int i, dummy;


Restore back old volume registers (unmute)

  for (i = 6; i < 8; i++)
    {
      ad_write (devc, i, devc->saved_regs[i] & ~0x80);
    }
  devc->is_muted = 0;
}

static void
ad_enter_MCE (cs4231_devc_t * devc)
{
  unsigned short prev;

  int timeout = 1000;
  while (timeout > 0 && CODEC_INB (devc, io_Index_Addr(devc)) == 0x80)	/*Are we initializing */
    timeout--;

  devc->MCE_bit = 0x40;
  prev = CODEC_INB (devc, io_Index_Addr (devc));
  if (prev & 0x40)
    {
      return;
    }

  CODEC_OUTB (devc, devc->MCE_bit, io_Index_Addr (devc));
}

static void
ad_leave_MCE (cs4231_devc_t * devc)
{
  unsigned char prev;
  int timeout = 1000;

  while (timeout > 0 && CODEC_INB (devc, io_Index_Addr(devc)) == 0x80)	/*Are we initializing */
    timeout--;

  devc->MCE_bit = 0x00;
  prev = CODEC_INB (devc, io_Index_Addr (devc));
  CODEC_OUTB (devc, 0x00, io_Index_Addr (devc));	/* Clear the MCE bit */

  if ((prev & 0x40) == 0)	/* Not in MCE mode */
    {
      return;
    }

  CODEC_OUTB (devc, 0x00, io_Index_Addr (devc));	/* Clear the MCE bit */
}

static int
cs4231_set_recmask (cs4231_devc_t * devc, int mask)
{
  unsigned char recdev;
  int i, n;

  mask &= devc->supported_rec_devices;

  /* Rename the mixer bits if necessary */
  for (i = 0; i < 32; i++)
    if (devc->mixer_reroute[i] != i)
      if (mask & (1 << i))
	{
	  mask &= ~(1 << i);
	  mask |= (1 << devc->mixer_reroute[i]);
	}

  n = 0;
  for (i = 0; i < 32; i++)	/* Count selected device bits */
    if (mask & (1 << i))
      n++;

  if (n == 0)
    mask = SOUND_MASK_MIC;
  else if (n != 1)		/* Too many devices selected */
    {
      mask &= ~devc->recmask;	/* Filter out active settings */

      n = 0;
      for (i = 0; i < 32; i++)	/* Count selected device bits */
	if (mask & (1 << i))
	  n++;

      if (n != 1)
	mask = SOUND_MASK_MIC;
    }

  switch (mask)
    {
    case SOUND_MASK_MIC:
      recdev = 2;
      break;

    case SOUND_MASK_LINE:
      recdev = 0;
      break;

    case SOUND_MASK_CD:
    case SOUND_MASK_LINE1:
      recdev = 1;
      break;

    case SOUND_MASK_IMIX:
      recdev = 3;
      break;

    default:
      mask = SOUND_MASK_MIC;
      recdev = 2;
    }

  recdev <<= 6;
  ad_write (devc, 0, (ad_read (devc, 0) & 0x3f) | recdev);
  ad_write (devc, 1, (ad_read (devc, 1) & 0x3f) | recdev);

  /* Rename the mixer bits back if necessary */
  for (i = 0; i < 32; i++)
    if (devc->mixer_reroute[i] != i)
      if (mask & (1 << devc->mixer_reroute[i]))
	{
	  mask &= ~(1 << devc->mixer_reroute[i]);
	  mask |= (1 << i);
	}

  devc->recmask = mask;
  return mask;
}

static void
change_bits (cs4231_devc_t * devc, unsigned char *regval, int dev, int chn,
	     int newval, int regoffs)
{
  unsigned char mask;
  int shift;
  int mute;
  int mutemask;
  int set_mute_bit;

  set_mute_bit = (newval == 0) || (devc->is_muted && dev == SOUND_MIXER_PCM);

  if (devc->mix_devices[dev][chn].polarity == 1)	/* Reverse */
    {
      newval = 100 - newval;
    }

  mask = (1 << devc->mix_devices[dev][chn].nbits) - 1;
  shift = devc->mix_devices[dev][chn].bitpos;

#if 0
  newval = (int) ((newval * mask) + 50) / 100;	/* Scale it */
  *regval &= ~(mask << shift);	/* Clear bits */
  *regval |= (newval & mask) << shift;	/* Set new value */
#else
  if (devc->mix_devices[dev][RIGHT_CHN].mutepos == 8)
    {				/* if there is no mute bit */
      mute = 0;			/* No mute bit; do nothing special */
      mutemask = ~0;		/* No mute bit; do nothing special */
    }
  else
    {
      mute = (set_mute_bit << devc->mix_devices[dev][RIGHT_CHN].mutepos);
      mutemask = ~(1 << devc->mix_devices[dev][RIGHT_CHN].mutepos);
    }

  newval = (int) ((newval * mask) + 50) / 100;	/* Scale it */
  *regval &= (~(mask << shift)) & (mutemask);	/* Clear bits */
  *regval |= ((newval & mask) << shift) | mute;	/* Set new value */
#endif
}

static int
cs4231_mixer_get (cs4231_devc_t * devc, int dev)
{
  if (!((1 << dev) & devc->supported_devices))
    return OSS_EINVAL;

  dev = devc->mixer_reroute[dev];

  return devc->levels[dev];
}

static int
cs4231_mixer_set (cs4231_devc_t * devc, int dev, int value)
{
  int left = value & 0x000000ff;
  int right = (value & 0x0000ff00) >> 8;
  int retvol;

  int regoffs, regoffs1;
  unsigned char val;

  if (dev > 31)
    return OSS_EINVAL;

  if (!(devc->supported_devices & (1 << dev)))
    return OSS_EINVAL;

  dev = devc->mixer_reroute[dev];

  if (left > 100)
    left = 100;
  if (right > 100)
    right = 100;

  if (devc->mix_devices[dev][RIGHT_CHN].nbits == 0)	/* Mono control */
    right = left;

  retvol = left | (right << 8);

#if 1
  /* Scale volumes */
  left = mix_cvt[left];
  right = mix_cvt[right];

  /* Scale it again */
  left = mix_cvt[left];
  right = mix_cvt[right];
#endif

  if (devc->mix_devices[dev][LEFT_CHN].nbits == 0)
    return OSS_EINVAL;

  devc->levels[dev] = retvol;


Set the left channel


  regoffs1 = regoffs = devc->mix_devices[dev][LEFT_CHN].regno;
  val = ad_read (devc, regoffs);
  change_bits (devc, &val, dev, LEFT_CHN, left, regoffs);
  devc->saved_regs[regoffs] = val;


Set the right channel


  if (devc->mix_devices[dev][RIGHT_CHN].nbits == 0)
    {
      ad_write (devc, regoffs, val);
      return retvol;		/* Was just a mono channel */
    }

  regoffs = devc->mix_devices[dev][RIGHT_CHN].regno;
  if (regoffs != regoffs1)
    {
      ad_write (devc, regoffs1, val);
      val = ad_read (devc, regoffs);
    }

  change_bits (devc, &val, dev, RIGHT_CHN, right, regoffs);
  ad_write (devc, regoffs, val);
  devc->saved_regs[regoffs] = val;

  return retvol;
}

static void
cs4231_mixer_reset (cs4231_devc_t * devc)
{
  int i;

  devc->mix_devices = &(cs4231_mix_devices[0]);
  devc->supported_devices = MODE2_MIXER_DEVICES;
  devc->supported_rec_devices = MODE2_REC_DEVICES;

  for (i = 0; i < 32; i++)
    devc->mixer_reroute[i] = i;

  devc->orig_devices = devc->supported_devices;
  devc->orig_rec_devices = devc->supported_rec_devices;

  devc->levels = default_mixer_levels;

  for (i = 0; i < SOUND_MIXER_NRDEVICES; i++)
    if (devc->supported_devices & (1 << i))
      cs4231_mixer_set (devc, i, devc->levels[i]);
  cs4231_set_recmask (devc, SOUND_MASK_MIC);
}

static int
cs4231_mixer_ioctl (int dev, int audiodev, unsigned int cmd, ioctl_arg arg)
{
  cs4231_devc_t *devc = mixer_devs[dev]->devc;

  if (cmd == SOUND_MIXER_PRIVATE1) /* SADA compatible play target selection */
    {
      int val;

      val = *arg;

      if (val == 0xffff)
	return *arg = devc->mixer_output_port;

      val &= (AUDIO_SPEAKER | AUDIO_HEADPHONE | AUDIO_LINE_OUT);

      devc->mixer_output_port = val;

      if (val & AUDIO_SPEAKER)
	ad_write (devc, 26, ad_read (devc, 26) & ~0x40);	/* Unmute mono out */
      else
	ad_write (devc, 26, ad_read (devc, 26) | 0x40);	/* Mute mono out */

      return *arg = devc->mixer_output_port;
    }

  if (((cmd >> 8) & 0xff) == 'M')
    {
      int val;

      if (IOC_IS_OUTPUT (cmd))
	switch (cmd & 0xff)
	  {
	  case SOUND_MIXER_RECSRC:
	    val = *arg;
	    return *arg = cs4231_set_recmask (devc, val);
	    break;

	  default:
	    val = *arg;
	    return *arg = cs4231_mixer_set (devc, cmd & 0xff, val);
	  }
      else

Return parameters

	  {

	  case SOUND_MIXER_RECSRC:
	    return *arg = devc->recmask;
	    break;

	  case SOUND_MIXER_DEVMASK:
	    return *arg = devc->supported_devices;
	    break;

	  case SOUND_MIXER_STEREODEVS:
	    return *arg = devc->supported_devices &
	      ~(SOUND_MASK_SPEAKER | SOUND_MASK_IMIX);
	    break;

	  case SOUND_MIXER_RECMASK:
	    return *arg = devc->supported_rec_devices;
	    break;

	  case SOUND_MIXER_CAPS:
	    return *arg = SOUND_CAP_EXCL_INPUT;
	    break;

	  default:
	    return *arg = cs4231_mixer_get (devc, cmd & 0xff);
	  }
    }
  else
    return OSS_EINVAL;
}

static int
cs4231_set_rate (int dev, int arg)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;


The sampling speed is encoded in the least significant nibble of I8. The LSB selects the clock source (0=24.576 MHz, 1=16.9344 MHz) and other three bits select the divisor (indirectly):

The available speeds are in the following table. Keep the speeds in the increasing order.

  typedef struct
  {
    int speed;
    unsigned char bits;
  }
  speed_struct;

  static speed_struct speed_table[] = {
    {5510, (0 << 1) | 1},
    {5510, (0 << 1) | 1},
    {6620, (7 << 1) | 1},
    {8000, (0 << 1) | 0},
    {9600, (7 << 1) | 0},
    {11025, (1 << 1) | 1},
    {16000, (1 << 1) | 0},
    {18900, (2 << 1) | 1},
    {22050, (3 << 1) | 1},
    {27420, (2 << 1) | 0},
    {32000, (3 << 1) | 0},
    {33075, (6 << 1) | 1},
    {37800, (4 << 1) | 1},
    {44100, (5 << 1) | 1},
    {48000, (6 << 1) | 0}
  };

  int i, n, selected = -1;

  n = sizeof (speed_table) / sizeof (speed_struct);

  if (arg <= 0)
    return devc->speed;

#if 1
  if (ad_read (devc, 9) & 0x03)
    return devc->speed;
#endif

  if (arg < speed_table[0].speed)
    selected = 0;
  if (arg > speed_table[n - 1].speed)
    selected = n - 1;

  for (i = 1 /*really */ ; selected == -1 && i < n; i++)
    if (speed_table[i].speed == arg)
      selected = i;
    else if (speed_table[i].speed > arg)
      {
	int diff1, diff2;

	diff1 = arg - speed_table[i - 1].speed;
	diff2 = speed_table[i].speed - arg;

	if (diff1 < diff2)
	  selected = i - 1;
	else
	  selected = i;
      }

  if (selected == -1)
    {
      cmn_err (CE_WARN, "Can't find supported sample rate?\n");
      selected = 3;
    }

  devc->speed = speed_table[selected].speed;
  devc->speed_bits = speed_table[selected].bits;
  return devc->speed;
}

static short
cs4231_set_channels (int dev, short arg)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  if (arg != 1 && arg != 2)
    {
      return devc->channels;
    }

#if 1
  if (ad_read (devc, 9) & 0x03)
    {
      return devc->channels;
    }
#endif

  devc->channels = arg;
  return arg;
}

static unsigned int
cs4231_set_bits (int dev, unsigned int arg)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  static struct format_tbl
  {
    int format;
    unsigned char bits;
  }
  format2bits[] =
  {
    {0, 0},
    {AFMT_MU_LAW, 1},
    {AFMT_A_LAW, 3},
    {AFMT_U8, 0},
    {AFMT_S16_LE, 2},
    {AFMT_S16_BE, 6},
    {AFMT_S8, 0},
    {AFMT_U16_LE, 0},
    {AFMT_U16_BE, 0}
  };
  int i, n = sizeof (format2bits) / sizeof (struct format_tbl);

  if (arg == 0)
    return devc->audio_format;

#if 1
  if (ad_read (devc, 9) & 0x03)
    return devc->audio_format;
#endif

  if (!(arg & ad_format_mask[devc->model]))
    arg = AFMT_U8;

  devc->audio_format = arg;

  for (i = 0; i < n; i++)
    if (format2bits[i].format == arg)
      {
	if ((devc->format_bits = format2bits[i].bits) == 0)
	  return devc->audio_format = AFMT_U8;	/* Was not supported */

	return arg;
      }

  /* Still hanging here. Something must be terribly wrong */
  devc->format_bits = 0;
  return devc->audio_format = AFMT_U8;
}

static const audiodrv_t cs4231_audio_driver = {
  cs4231_open,
  cs4231_close,
  cs4231_output_block,
  cs4231_start_input,
  cs4231_ioctl,
  cs4231_prepare_for_input,
  cs4231_prepare_for_output,
  cs4231_halt,
  NULL,
  NULL,
  cs4231_halt_input,
  cs4231_halt_output,
  cs4231_trigger,
  cs4231_set_rate,
  cs4231_set_bits,
  cs4231_set_channels
};

static mixer_driver_t cs4231_mixer_driver = {
  cs4231_mixer_ioctl
};

static int
cs4231_open (int dev, int mode, int open_flags)
{
  cs4231_devc_t *devc = NULL;
  cs4231_portc_t *portc;
  oss_native_word flags;

  if (dev < 0 || dev >= num_audio_engines)
    return OSS_ENXIO;

  devc = (cs4231_devc_t *) audio_engines[dev]->devc;
  portc = (cs4231_portc_t *) audio_engines[dev]->portc;

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);
  if (portc->open_mode || (devc->open_mode & mode))
    {
      MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
      return OSS_EBUSY;
    }

  devc->open_mode |= mode;
  portc->open_mode = mode;
  devc->audio_mode &= ~mode;

  if (mode & OPEN_READ)
    devc->record_dev = dev;
  if (mode & OPEN_WRITE)
    devc->playback_dev = dev;

Mute output until the playback really starts. This decreases clicking (hope so).

  ad_mute (devc);
  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);

  return 0;
}

static void
cs4231_close (int dev, int mode)
{
  oss_native_word flags;
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;
  cs4231_portc_t *portc = (cs4231_portc_t *) audio_engines[dev]->portc;

  DDB (cmn_err (CE_CONT, "cs4231_close(void)\n"));

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);

  cs4231_halt (dev);

  devc->open_mode &= ~portc->open_mode;
  devc->audio_mode &= ~portc->open_mode;
  portc->open_mode = 0;

  ad_mute (devc);
  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
}

static int
cs4231_ioctl (int dev, unsigned int cmd, ioctl_arg arg)
{
  return OSS_EINVAL;
}

static void
cs4231_output_block (int dev, oss_native_word buf, int count, int fragsize,
		     int intrflag)
{
  oss_native_word flags;
  unsigned int cnt;
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  cnt = fragsize;
  /* cnt = count; */

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);
  if (devc->audio_format & (AFMT_S16_LE | AFMT_S16_BE))	/* 16 bit data */
     cnt >>= 1;
  if (devc->channels > 1)
     cnt >>= 1;
  cnt--;

  if (devc->audio_mode & PCM_ENABLE_OUTPUT
      && audio_engines[dev]->flags & ADEV_AUTOMODE && intrflag
      && cnt == devc->xfer_count)
    {
      devc->audio_mode |= PCM_ENABLE_OUTPUT;
      MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
      return;
    }

  ad_write (devc, 15, (unsigned char) (cnt & 0xff));
  ad_write (devc, 14, (unsigned char) ((cnt >> 8) & 0xff));

  devc->xfer_count = cnt;
  devc->audio_mode |= PCM_ENABLE_OUTPUT;
  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
}

static void
cs4231_start_input (int dev, oss_native_word buf, int count, int fragsize,
		    int intrflag)
{
  oss_native_word flags;
  unsigned int cnt;
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);
  cnt = fragsize;
  /* cnt = count; */

  if (devc->audio_format & (AFMT_S16_LE | AFMT_S16_BE))	/* 16 bit data */
     cnt >>= 1;

  if (devc->channels > 1)
    cnt >>= 1;
  cnt--;

  if (devc->audio_mode & PCM_ENABLE_INPUT
      && audio_engines[dev]->flags & ADEV_AUTOMODE && intrflag
      && cnt == devc->xfer_count)
    {
      devc->audio_mode |= PCM_ENABLE_INPUT;
      MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);

Auto DMA mode on. No need to react

    }

  ad_write (devc, 31, (unsigned char) (cnt & 0xff));
  ad_write (devc, 30, (unsigned char) ((cnt >> 8) & 0xff));

  ad_unmute (devc);

  devc->xfer_count = cnt;
  devc->audio_mode |= PCM_ENABLE_INPUT;
  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
}

static void
set_output_format (int dev)
{
  int timeout;
  unsigned char fs, old_fs, tmp = 0;
  oss_native_word flags;
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  if (ad_read (devc, 9) & 0x03)
    return;

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);
  fs = devc->speed_bits | (devc->format_bits << 5);

  if (devc->channels > 1)
    fs |= 0x10;

  ad_enter_MCE (devc);		/* Enables changes to the format select reg */

  old_fs = ad_read (devc, 8);

  ad_write (devc, 8, fs);

Write to I8 starts resynchronization. Wait until it completes.

  timeout = 0;
  while (timeout < 100 && CODEC_INB (devc, io_Index_Addr(devc)) != 0x80)
    timeout++;
  timeout = 0;
  while (timeout < 10000 && CODEC_INB (devc, io_Index_Addr(devc)) == 0x80)
    timeout++;

  ad_leave_MCE (devc);

  devc->xfer_count = 0;
  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
}

static void
set_input_format (int dev)
{
  int timeout;
  unsigned char fs, old_fs, tmp = 0;
  oss_native_word flags;
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);
  fs = devc->speed_bits | (devc->format_bits << 5);

  if (devc->channels > 1)
    fs |= 0x10;

  ad_enter_MCE (devc);		/* Enables changes to the format select reg */


If mode >= 2 (CS4231), set I28. It's the capture format register.

  if (devc->model != MD_1848)
    {
      old_fs = ad_read (devc, 28);
      ad_write (devc, 28, fs);


Write to I28 starts resynchronization. Wait until it completes.

      timeout = 0;
      while (timeout < 100 && CODEC_INB (devc, io_Index_Addr(devc)) != 0x80)
	timeout++;

      timeout = 0;
      while (timeout < 10000 && CODEC_INB (devc, io_Index_Addr(devc)) == 0x80)
	timeout++;

      if (devc->model != MD_1848)
	{

CS4231 compatible devices don't have separate sampling rate selection register for recording an playback. The I8 register is shared so we have to set the speed encoding bits of it too.

	  unsigned char tmp = devc->speed_bits | (ad_read (devc, 8) & 0xf0);
	  ad_write (devc, 8, tmp);

Write to I8 starts resynchronization. Wait until it completes.

	  timeout = 0;
	  while (timeout < 100 && CODEC_INB (devc, io_Index_Addr(devc)) != 0x80)
	    timeout++;

	  timeout = 0;
	  while (timeout < 10000 && CODEC_INB (devc, io_Index_Addr(devc)) == 0x80)
	    timeout++;
	}
    }
  else
    {				/* For CS4231 set I8. */

      old_fs = ad_read (devc, 8);
      ad_write (devc, 8, fs);

Write to I8 starts resynchronization. Wait until it completes.

      timeout = 0;
      while (timeout < 100 && CODEC_INB (devc, io_Index_Addr(devc)) != 0x80)
	timeout++;
      timeout = 0;
      while (timeout < 10000 && CODEC_INB (devc, io_Index_Addr(devc)) == 0x80)
	timeout++;
    }

  ad_leave_MCE (devc);
  devc->xfer_count = 0;
  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);

}

static void
set_sample_format (int dev)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  if (ad_read (devc, 9) & 0x03)	/* Playback or recording active */
    return;

  set_input_format (dev);
  set_output_format (dev);
}

static int
cs4231_prepare_for_output (int dev, int bsize, int bcount)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  ad_mute (devc);

  cs4231_halt_output (dev);
  set_sample_format (dev);


Setup the EB2 DMA engine


  return 0;
}

static int
cs4231_prepare_for_input (int dev, int bsize, int bcount)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;

  if (devc->audio_mode)
    return 0;

  cs4231_halt_input (dev);
  set_sample_format (dev);
  //TODO: Prepare the DMA engine
  return 0;
}

static void
cs4231_halt (int dev)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;
  cs4231_portc_t *portc = (cs4231_portc_t *) audio_engines[dev]->portc;

  unsigned char bits = ad_read (devc, 9);

  if (bits & 0x01 && portc->open_mode & OPEN_WRITE)
    cs4231_halt_output (dev);

  if (bits & 0x02 && portc->open_mode & OPEN_READ)
    cs4231_halt_input (dev);
}

static void
cs4231_halt_input (int dev)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;
  cs4231_portc_t *portc = (cs4231_portc_t *) audio_engines[dev]->portc;
  oss_native_word flags;

  if (!(portc->open_mode & OPEN_READ))
    return;
  if (!(ad_read (devc, 9) & 0x02))
    return;			/* Capture not enabled */

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);

  ad_write (devc, 9, ad_read (devc, 9) & ~0x02);	/* Stop capture */
  // TODO: Stop DMA

  CODEC_OUTB (devc, 0, io_Status (devc));	/* Clear interrupt status */
  CODEC_OUTB (devc, 0, io_Status (devc));	/* Clear interrupt status */

  devc->audio_mode &= ~PCM_ENABLE_INPUT;

  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
}

static void
cs4231_halt_output (int dev)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;
  cs4231_portc_t *portc = (cs4231_portc_t *) audio_engines[dev]->portc;
  oss_native_word flags;

  if (!(portc->open_mode & OPEN_WRITE))
    return;
  if (!(ad_read (devc, 9) & 0x01))
    return;			/* Playback not enabled */

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);

  ad_mute (devc);
  oss_udelay (10);

  ad_write (devc, 9, ad_read (devc, 9) & ~0x01);	/* Stop playback */
  //TODO: Disable DMA

  CODEC_OUTB (devc, 0, io_Status (devc));	/* Clear interrupt status */
  CODEC_OUTB (devc, 0, io_Status (devc));	/* Clear interrupt status */

  devc->audio_mode &= ~PCM_ENABLE_OUTPUT;

  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
}

static void
cs4231_trigger (int dev, int state)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) audio_engines[dev]->devc;
  cs4231_portc_t *portc = (cs4231_portc_t *) audio_engines[dev]->portc;
  oss_native_word flags;
  unsigned char tmp, old, oldstate;

  MUTEX_ENTER_IRQDISABLE (devc->mutex, flags);
  oldstate = state;
  state &= devc->audio_mode;

  tmp = old = ad_read (devc, 9);

  if (portc->open_mode & OPEN_READ)
    {
      if (state & PCM_ENABLE_INPUT)
	tmp |= 0x02;
      else
	tmp &= ~0x02;
    }

  if (portc->open_mode & OPEN_WRITE)
    {
      if (state & PCM_ENABLE_OUTPUT)
	tmp |= 0x01;
      else
	tmp &= ~0x01;
    }

  /* ad_mute(devc); */
  if (tmp != old)
    {
      ad_write (devc, 9, tmp);
      if (state & PCM_ENABLE_OUTPUT)
	{
	  oss_udelay (10);
	  oss_udelay (10);
	  oss_udelay (10);
	  ad_unmute (devc);
	}
    }

  MUTEX_EXIT_IRQRESTORE (devc->mutex, flags);
}

static void
cs4231_init_hw (cs4231_devc_t * devc)
{
  int i;
  oss_native_word flags;

Initial values for the indirect registers of CS4248/CS4231.

  static int init_values[] = {
    0xa8, 0xa8, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88,
    0x00, 0x0c, 0x02, 0x00, 0x8a, 0x01, 0x00, 0x00,

    /* Positions 16 to 31 just for CS4231/2 and ad1845 */
    0x80, 0x00, 0x10, 0x10, 0x00, 0x00, 0x1f, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  };

  for (i = 0; i < 16; i++)
    ad_write (devc, i, init_values[i]);


The XCTL0 (0x40) and XCTL1 (0x80) bits of I10 are used in Sparcs to control codec's output pins which mute the line out and speaker out connectors (respectively).

Set them both to 0 (not muted). Better control is required in future.


  ad_write (devc, 10, ad_read (devc, 10) & ~0xc0);

  ad_mute (devc);		/* Mute PCM until next use and initialize some variables */

  if (devc->model > MD_1848)
    {
      ad_write (devc, 12, ad_read (devc, 12) | 0x40);	/* Mode2 = enabled */

      for (i = 16; i < 32; i++)
	ad_write (devc, i, init_values[i]);

    }

  if (devc->model > MD_1848)
    {
      if (devc->audio_flags & ADEV_DUPLEX)
	ad_write (devc, 9, ad_read (devc, 9) & ~0x04);	/* Dual DMA mode */
      else
	ad_write (devc, 9, ad_read (devc, 9) | 0x04);	/* Single DMA mode */

    }
  else
    {
      devc->audio_flags &= ~ADEV_DUPLEX;
      ad_write (devc, 9, ad_read (devc, 9) | 0x04);	/* Single DMA mode */
    }

  CODEC_OUTB (devc, 0, io_Status (devc));	/* Clear pending interrupts */


Toggle the MCE bit. It completes the initialization phase.


  MUTEX_ENTER_IRQDISABLE (devc->low_mutex, flags);
  ad_enter_MCE (devc);		/* In case the bit was off */
  ad_leave_MCE (devc);
  MUTEX_EXIT_IRQRESTORE (devc->low_mutex, flags);


Perform full calibration


  MUTEX_ENTER_IRQDISABLE (devc->low_mutex, flags);
  ad_enter_MCE (devc);
  MUTEX_EXIT_IRQRESTORE (devc->low_mutex, flags);

  ad_write (devc, 9, ad_read (devc, 9) | 0x18);	/* Enable autocalibration */

  MUTEX_ENTER_IRQDISABLE (devc->low_mutex, flags);
  ad_leave_MCE (devc);		/* This will trigger autocalibration */
  ad_enter_MCE (devc);
  MUTEX_EXIT_IRQRESTORE (devc->low_mutex, flags);

  ad_write (devc, 9, ad_read (devc, 9) & ~0x18);	/* Disable autocalibration */

  MUTEX_ENTER_IRQDISABLE (devc->low_mutex, flags);
  ad_leave_MCE (devc);
  MUTEX_EXIT_IRQRESTORE (devc->low_mutex, flags);
}

int
cs4231_detect (cs4231_devc_t * devc)
{

  unsigned char tmp;
  unsigned char tmp1 = 0xff, tmp2 = 0xff;
  oss_native_word flags;

  int i;

  devc->MCE_bit = 0x40;
  devc->chip_name = "CS4231";
  devc->model = MD_4231;	/* CS4231 or CS4248 */
  devc->levels = NULL;


Check that the I/O address is in use.

The bit 0x80 of the base I/O port is known to be 0 after the chip has performed its power on initialization. Just assume this has happened before the OS is starting.

If the I/O address is unused, it typically returns 0xff.


  if (CODEC_INB (devc, io_Index_Addr(devc)) == 0xff)
    {
      DDB (cmn_err
	   (CE_CONT,
	    "cs4231_detect: The base I/O address appears to be dead\n"));
    }

#if 1

Wait for the device to stop initialization

  DDB (cmn_err (CE_CONT, "cs4231_detect() - step 0\n"));

  for (i = 0; i < 10000000; i++)
    {
      unsigned char x = CODEC_INB (devc, io_Index_Addr(devc));
      if (x == 0xff || !(x & 0x80))
	break;
    }

#endif

  DDB (cmn_err (CE_CONT, "cs4231_detect() - step A\n"));

  if (CODEC_INB (devc, io_Index_Addr(devc)) == 0x80)	/* Not ready. Let's wait */
  {
    MUTEX_ENTER_IRQDISABLE (devc->low_mutex, flags);
    ad_leave_MCE (devc);
    MUTEX_EXIT_IRQRESTORE (devc->low_mutex, flags);
  }

  if ((CODEC_INB (devc, io_Index_Addr(devc)) & 0x80) != 0x00)	/* Not a CS4231 */
    {
      DDB (cmn_err (CE_WARN, "cs4231 detect error - step A (%02x)\n",
		    (int) CODEC_INB (devc, io_Index_Addr(devc))));
      return 0;
    }


Test if it's possible to change contents of the indirect registers. Registers 0 and 1 are ADC volume registers. The bit 0x10 is read only so try to avoid using it.


  DDB (cmn_err (CE_CONT, "cs4231_detect() - step B\n"));
  ad_write (devc, 0, 0xaa);
  ad_write (devc, 1, 0x45);	/* 0x55 with bit 0x10 clear */
  oss_udelay (10);

  if ((tmp1 = ad_read (devc, 0)) != 0xaa ||
      (tmp2 = ad_read (devc, 1)) != 0x45)
    {
      DDB (cmn_err
	   (CE_WARN, "cs4231 detect error - step B (%x/%x)\n", tmp1, tmp2));
#if 1
      if (tmp1 == 0x8a && tmp2 == 0xff)	/* AZT2320 ????? */
	{
	  DDB (cmn_err (CE_CONT, "Ignoring error\n"));
	}
      else
#endif
	return 0;
    }

  DDB (cmn_err (CE_CONT, "cs4231_detect() - step C\n"));
  ad_write (devc, 0, 0x45);
  ad_write (devc, 1, 0xaa);
  oss_udelay (10);

  if ((tmp1 = ad_read (devc, 0)) != 0x45
      || (tmp2 = ad_read (devc, 1)) != 0xaa)
    {
      DDB (cmn_err
	   (CE_WARN, "cs4231 detect error - step C (%x/%x)\n", tmp1, tmp2));
#if 1
      if (tmp1 == 0x65 && tmp2 == 0xff)	/* AZT2320 ????? */
	{
	  DDB (cmn_err (CE_CONT, "Ignoring error\n"));
	}
      else
#endif
	return 0;
    }


The indirect register I12 has some read only bits. Lets try to change them.

  DDB (cmn_err (CE_CONT, "cs4231_detect() - step D\n"));
  tmp = ad_read (devc, 12);
  ad_write (devc, 12, (~tmp) & 0x0f);

  if ((tmp & 0x0f) != ((tmp1 = ad_read (devc, 12)) & 0x0f))
    {
      DDB (cmn_err (CE_WARN, "cs4231 detect error - step D (%x)\n", tmp1));
      return 0;
    }


NOTE! Last 4 bits of the reg I12 tell the chip revision. 0x01=RevB and 0x0A=RevC.


  DDB (cmn_err (CE_CONT, "cs4231_detect() - step G\n"));

  ad_write (devc, 12, 0x40);	/* Set mode2, clear 0x80 */

  tmp1 = ad_read (devc, 12);
  if (tmp1 & 0x80)
    {
      devc->chip_name = "CS4248";	/* Our best knowledge just now */
    }

  if ((tmp1 & 0xc0) == (0x80 | 0x40))
    {

CS4231 detected - is it?

Verify that setting I0 doesn't change I16.

      DDB (cmn_err (CE_CONT, "cs4231_detect() - step H\n"));
      ad_write (devc, 16, 0);	/* Set I16 to known value */

      ad_write (devc, 0, 0x45);
      if ((tmp1 = ad_read (devc, 16)) != 0x45)	/* No change -> CS4231? */
	{

	  ad_write (devc, 0, 0xaa);
	  if ((tmp1 = ad_read (devc, 16)) == 0xaa)	/* Rotten bits? */
	    {
	      DDB (cmn_err
		   (CE_WARN, "cs4231 detect error - step H(%x)\n", tmp1));
	      return 0;
	    }


Verify that some bits of I25 are read only.


	  DDB (cmn_err (CE_CONT, "cs4231_detect() - step I\n"));
	  tmp1 = ad_read (devc, 25);	/* Original bits */
	  ad_write (devc, 25, ~tmp1);	/* Invert all bits */
	  if ((ad_read (devc, 25) & 0xe7) == (tmp1 & 0xe7))
	    {
	      int id, full_id;


It's at least CS4231

	      devc->chip_name = "CS4231";

	      devc->model = MD_4231;


It could be an AD1845 or CS4231A as well. CS4231 and AD1845 report the same revision info in I25 while the CS4231A reports different.


	      id = ad_read (devc, 25) & 0xe7;
	      full_id = ad_read (devc, 25);
	      if (id == 0x80)	/* Device busy??? */
		id = ad_read (devc, 25) & 0xe7;
	      if (id == 0x80)	/* Device still busy??? */
		id = ad_read (devc, 25) & 0xe7;
	      DDB (cmn_err
		   (CE_CONT, "cs4231_detect() - step J (%02x/%02x)\n", id,
		    ad_read (devc, 25)));

	      switch (id)
		{

		case 0xa0:
		  devc->chip_name = "CS4231A";
		  devc->model = MD_4231A;
		  break;

		default:	/* Assume CS4231 or OPTi 82C930 */
		  DDB (cmn_err (CE_CONT, "I25 = %02x/%02x\n",
				ad_read (devc, 25),
				ad_read (devc, 25) & 0xe7));
		  devc->model = MD_4231;

		}
	    }
	  ad_write (devc, 25, tmp1);	/* Restore bits */

	  DDB (cmn_err (CE_CONT, "cs4231_detect() - step K\n"));
	}
    }

  DDB (cmn_err (CE_CONT, "cs4231_detect() - Detected OK\n"));

  return 1;
}

void
cs4231_init (cs4231_devc_t * devc)
{
  int i, my_dev, my_mixer;
  char dev_name[100];

  cs4231_portc_t *portc = NULL;

  devc->open_mode = 0;
  devc->timer_ticks = 0;
  devc->audio_flags = ADEV_AUTOMODE;
  devc->playback_dev = devc->record_dev = 0;

  sprintf (dev_name, "Sparc builtin audio (%s)", devc->chip_name);

  if ((my_mixer = oss_install_mixer (OSS_MIXER_DRIVER_VERSION,
				     devc->osdev,
				     devc->osdev,
				     dev_name,
				     &cs4231_mixer_driver,
				     sizeof (mixer_driver_t), devc)) >= 0)
    {
      cs4231_mixer_reset (devc);
    }

  if (devc->model > MD_1848)
    {
      devc->audio_flags |= ADEV_DUPLEX;
    }

  if ((my_dev = oss_install_audiodev (OSS_AUDIO_DRIVER_VERSION,
				      devc->osdev,
				      devc->osdev,
				      dev_name,
				      &cs4231_audio_driver,
				      sizeof (audiodrv_t),
				      devc->audio_flags,
				      ad_format_mask[devc->model],
				      devc, -1)) < 0)
    {
      return;
    }

  portc = PMALLOC (devc->osdev, sizeof (*portc));
  memset ((char *) portc, 0, sizeof (*portc));

  audio_engines[my_dev]->portc = portc;
  audio_engines[my_dev]->min_block = 512;
  audio_engines[my_dev]->mixer_dev = my_mixer;

  cs4231_init_hw (devc);

#ifdef CONFIG_OSS_VMIX
  if (i == 0)
     vmix_attach_audiodev(devc->osdev, my_dev, -1, 0);
#endif
#if 0
  test_it (devc);
#endif
}

void
cs4231_unload (cs4231_devc_t * devc)
{
#if 0
  int i, dev = 0;

  for (i = 0; devc == NULL && i < nr_cs4231_devs; i++)
    if (adev_info[i].base == io_base)
      {
	devc = &adev_info[i];
	dev = devc->dev_no;
      }

  if (devc != NULL)
    {

      if (!share_dma)
	{
	  if (irq > 0)
	    snd_release_irq (devc->irq, NULL);

	  FREE_DMA_CHN (audio_engines[dev]->dmap_out->dma);

	  if (audio_engines[dev]->dmap_in->dma !=
	      audio_engines[dev]->dmap_out->dma)
	    FREE_DMA_CHN (audio_engines[dev]->dmap_in->dma);
	}
    }
  else
    cmn_err (CE_WARN, "Can't find device to be unloaded. Base=%x\n", io_base);
#endif
}

int
cs4231intr (oss_device_t * osdev)
{
  unsigned char status;
  cs4231_devc_t *devc = osdev->devc;
  int alt_stat = 0xff;
  unsigned char c930_stat = 0;
  int cnt = 0;
  int serviced = 0;

  devc->irq_ok = 1;

interrupt_again:		/* Jump back here if int status doesn't reset */

  status = CODEC_INB (devc, io_Status (devc));

  if (status == 0x80)
    cmn_err (CE_CONT, "cs4231intr: Why?\n");
  else
    serviced = 1;
  if (devc->model == MD_1848)
    CODEC_OUTB (devc, 0, io_Status (devc));	/* Clear interrupt status */

  if (status & 0x01)
    {
      if (devc->model != MD_1848)
	{
	  alt_stat = ad_read (devc, 24);
	}

      /* Acknowledge the intr before proceeding */
      if (devc->model != MD_1848)
	ad_write (devc, 24, ad_read (devc, 24) & ~alt_stat);	/* Selective ack */

      if (devc->open_mode & OPEN_READ && devc->audio_mode & PCM_ENABLE_INPUT
	  && alt_stat & 0x20)
	{
	  oss_audio_inputintr (devc->record_dev, 0);
	}

      if (devc->open_mode & OPEN_WRITE && devc->audio_mode & PCM_ENABLE_OUTPUT
	  && alt_stat & 0x10)
	{
	  oss_audio_outputintr (devc->playback_dev, 1);
	}

      if (devc->model != MD_1848 && alt_stat & 0x40)	/* Timer interrupt */
	{
	  devc->timer_ticks++;
	}
    }

#if 1

Sometimes playback or capture interrupts occur while a timer interrupt is being handled. The interrupt will not be retriggered if we don't handle it now. Check if an interrupt is still pending and restart the handler in this case.

  if (CODEC_INB (devc, io_Status (devc)) & 0x01 && cnt++ < 4)
    {
      goto interrupt_again;
    }
#endif
  return serviced;
}

int
oss_audiocs_attach (oss_device_t * osdev)
{
  unsigned int dw;
  int err;

static ddi_device_acc_attr_t acc_attr = {
  DDI_DEVICE_ATTR_V0,
  DDI_STRUCTURE_LE_ACC,
  DDI_STRICTORDER_ACC
};
  caddr_t addr;

  cs4231_devc_t *devc = osdev->devc;

  DDB(cmn_err(CE_CONT, "Entered oss_audiocs_attach()\n"));

  if ((devc = PMALLOC (osdev, sizeof (*devc))) == NULL)
    {
      cmn_err (CE_WARN, "Out of memory\n");
      return 0;
    }

  devc->osdev = osdev;
  osdev->devc = devc;
  devc->open_mode = 0;

  devc->chip_name = "Generic CS4231";


Map I/O registers. This is done in Solaris specific way so the code is not portable.


  // Codec registers
  if ((err = ddi_regs_map_setup
       (osdev->dip, 0, &addr, 0, 16, &acc_attr,
	&CODEC_HNDL)) != DDI_SUCCESS)
     {
	     cmn_err(CE_WARN, "Cannot map codec registers, error=%d\n", err);
	     return 0;
     }
  devc->codec_base = (struct cs4231_pioregs*)addr;

  // Play registers
  if ((err = ddi_regs_map_setup
       (osdev->dip, 1, (caddr_t *)&devc->play_regs, 0, sizeof(cs4231_eb2regs_t), &acc_attr,
	&PLAY_HNDL)) != DDI_SUCCESS)
     {
	     cmn_err(CE_WARN, "Cannot map codec registers, error=%d\n", err);
	     return 0;
     }

  // Capture registers
  if ((err = ddi_regs_map_setup
       (osdev->dip, 2, (caddr_t *)&devc->rec_regs, 0, sizeof(cs4231_eb2regs_t), &acc_attr,
	&REC_HNDL)) != DDI_SUCCESS)
     {
	     cmn_err(CE_WARN, "Cannot map codec registers, error=%d\n", err);
	     return 0;
     }

  // Auxio register
  if ((err = ddi_regs_map_setup
       (osdev->dip, 3, &addr, 0, 4, &acc_attr,
	&AUXIO_HNDL)) != DDI_SUCCESS)
     {
	     cmn_err(CE_WARN, "Cannot map aixio register, error=%d\n", err);
	     return 0;
     }
  devc->auxio_base = (uint_t *)addr;

  MUTEX_INIT (devc->osdev, devc->mutex, MH_DRV);
  MUTEX_INIT (devc->osdev, devc->low_mutex, MH_DRV + 1);

  eb2_power(devc, 1);

  if (oss_register_interrupts (devc->osdev, 0, cs4231intr, NULL) < 0)
    {
      cmn_err (CE_WARN, "Unable to install interrupt handler\n");
      return 0;
    }

  if (!cs4231_detect(devc))
     return 0;

  oss_register_device (osdev, devc->chip_name);

  cs4231_init (devc);

  return 1;
}

int
oss_audiocs_detach (oss_device_t * osdev)
{
  cs4231_devc_t *devc = (cs4231_devc_t *) osdev->devc;

  if (oss_disable_device (osdev) < 0)
    return 0;

  oss_unregister_interrupts (devc->osdev);

  eb2_power(devc, 0);

  ddi_regs_map_free(&CODEC_HNDL);
  ddi_regs_map_free(&PLAY_HNDL);
  ddi_regs_map_free(&REC_HNDL);
  ddi_regs_map_free(&AUXIO_HNDL);

  MUTEX_CLEANUP (devc->mutex);
  MUTEX_CLEANUP (devc->low_mutex);

  oss_unregister_device (osdev);

  return 1;
}

Copyright (C) 4Front Technologies, 2007. All rights reserved.

Back to index OSS web site


Copyright (C) 4Front Technologies, 2007. All rights reserved.
Back to index OSS web site